Symmetric Circulant Matrices and Publickey Cryptography

نویسندگان

  • A. V. Ramakrishna
  • T. V. N. Prasanna
  • V. N. Prasanna
چکیده

An important aspect of cryptography with matrices is that given N ×N matrix P over a field F find a class of matrices G over F such that the associated doubly circulant matrix Gc is singular in order that the equation AGB = P in circulant matrices A,B has infinitely many solutions. The aim of this note is to present such a class of matrices G. We also present a direct method of finding the inverse of a symmetric circulant matrix of order n, ( a b b ... b ) where a+ (n− 1)b = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvectors of block circulant and alternating circulant matrices

The eigenvectors and eigenvalues of block circulant matrices had been found for real symmetric matrices with symmetric submatrices, and for block circulant matrices with circulant submatrices. The eigenvectors are now found for general block circulant matrices, including the Jordan Canonical Form for defective eigenvectors. That analysis is applied to Stephen J. Watson’s alternating circulant m...

متن کامل

The Limiting Spectral Measure for the Ensemble of Generalized Real Symmetric Block m-Circulant Matrices

Given an ensemble of N × N random matrices with independent entries chosen from a nice probability distribution, a natural question is whether the empirical spectral measures of typical matrices converge to some limiting measure as N → ∞. It has been shown that the limiting spectral distribution for the ensemble of real symmetric matrices is a semi-circle, and that the distribution for real sym...

متن کامل

The discrete logarithm problem in the group of non-singular circulant matrices

The discrete logarithm problem is one of the backbones in public key cryptography. In this paper we study the discrete logarithm problem in the group of circulant matrices over a finite field. This gives rise to secure and fast public key cryptosystems.

متن کامل

IACR Transactions on Symmetric Cryptology

Near-MDS matrices provide better trade-offs between security and efficiency compared to constructions based on MDS matrices, which are favored for hardwareoriented designs. We present new designs of lightweight linear diffusion layers by constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant matrices are found for 5 ≤ n ≤ 9. Secondly , the implementation cost of inst...

متن کامل

On Constructions of MDS Matrices From Circulant-Like Matrices For Lightweight Cryptography

Maximum distance separable (MDS) matrices have applications not only in coding theory but are also of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a SAC 2004 paper, Junod et. al. constructed a new class of efficient MDS matrices whose submatrices were circulant matrices and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013